FREQUENCY DISTRIBUTIONS OF SURFACE WATER TOTAL PHOSPHORUS IN THE LOXAHATCHEE REFUGE: SIMILARITY AND IMPLICATIONS FOR DYNAMIC MODELS

Michael G. Waldon, unaffiliated, Lafayette, LA, USA Donatto Surratt, Everglades Program Team, National Park Service, Boynton Beach, FL, USA

Acknowledgements

Disclaimer

Arthur R. **Marshall** Loxahatchee **National** Wildlife Refuge LOXA **Monitoring Sites**

Concepts, Processes, Models

- Water column conc c (mg/m³ or ug/L)
- Water column mass m (mg/m² or ug/L)
- *m=zc* where *z* is water depth (m)
- Available storage S (mg/m² or ug/L)
- Uptake, $U = m \rightarrow S$
- Return, $R = S \rightarrow m$
- Burial, $B \qquad S \rightarrow permanent loss$

Mass Balance Models

dm/dt = -U + R +Load in -Load out $K-c^* \mod l$ $dm/dt = -Kc + Kc^* + Load in -Load out$ **DMSTA model** $dm/dt = -k_1Sc + k_2S^2 + Load in -Load out$ $K=k_1S$, and $c^* = (k_2/k_1)S$

Assumptions & Rationale

- U and R are fast; B is slow
- S >> m
- Rate of change of S and m are roughly equal
- Therefore, rate of change for S relative to its magnitude is much slower than for *m*
- Roughly assume S & thus K and c* constant over 1 to several years or when long-term average loading is unchanged

No-Load Condition

With the assumption that S may be approximated as constant over short periods of weeks to months, when load and flow drop to near zero, c will approach the constant equilibrium concentration c^* which is dependent on past long-term net loading.

• Use to estimate *c** at monitoring sites.

Methodology-classification of stable antecedent conditions to identify approximate no-load monitoring samples

- Assumed flat-pool in Refuge
- Used canal gauge 1-8C
- Classed day as "steady" if
 7-day average(|Stage_i-Stage_{i-1}|) < 0.02 ft/d

Water Surface Elevation (Stage) at the 1-8C Canal Gauge

10

Total Phosphorus (TP) at Refuge LOXA Marsh Sites

Mean TP Concentration

12

Variability is reduced at steady stage TP samples

13

Frequency Distributions

Scaled Concentration Frequency Distribution

15

Scaled Concentration Frequency Distribution

Scaled Concentration Frequency Distribution

Estimate of c* as a function of mean c

Relationship to Geometric Mean

Relationship to Depth

Temporal trends

Values of This Approach Estimating c*

- Gain a better physical/scientific understanding
- Quantifies a hydrologic source of TP variability
- Provides a basis for further study
- Reduced uncertainty in statistical TP models
- Constrain dynamic model parameters
- Improved credibility of dynamic TP models

Conclusions

- The wide range of mean TP at LOXA sites provides a resource for testing concepts/models of marsh TP concentration response to loading
- Frequency distributions among sites are similar
- Some statistical analyses may utilize this property to pool site data and thus reduce uncertainty
- Variability is reduced in steady stage TP samples
- *c** is roughly 84% of mean *c* at LOXA sites
- This proportionality informs model structure design, and the value constrains model parameter estimation

Recommendations

- Investigate residual variability in the *c** estimates
 - Determine if there are temporal trends temporal trend in *c** relates to similar trend in *S*, and estimates legacy impairment recovery
- Use EDEN stage estimates to improve the steady stage antecedent condition classification at marsh sites
- Extend steady stage/no-load analyses
 - o to other Everglades marsh monitoring
 - o to STA monitoring data analysis and modeling

For more information:

Mike Waldon

email: mike@mwaldon Follow: http://www.researchgate.net/profile/Michael_Waldon2

Donatto Surratt

email: Donatto_Surratt@nps.gov